If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x-541=0
a = 2; b = 4; c = -541;
Δ = b2-4ac
Δ = 42-4·2·(-541)
Δ = 4344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4344}=\sqrt{4*1086}=\sqrt{4}*\sqrt{1086}=2\sqrt{1086}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{1086}}{2*2}=\frac{-4-2\sqrt{1086}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{1086}}{2*2}=\frac{-4+2\sqrt{1086}}{4} $
| 134x=7 | | 8=8b=2b=2b+16 | | 3n+5=19= | | 2x^+2x+9=8 | | 13.75+.11x=14.50+.09x | | 9e=-63 | | -41−17+x=-39 | | 2y-18=54 | | (8r+9)+7(4r+3)=4 | | 17s+13=-4 | | 89=4d | | 29+8x=37x | | 0=9(k-2/3+33 | | (8r+9)+7(4r+3)=-2 | | 4(c+12=2c+18 | | 323+27x=-139+20x | | 8y+3=6y+10 | | -10x+1=81= | | 5x3−x=x15−95 | | 2r(9-9r)=3 | | 6c−2+4c=8c | | (2X+1)(2x+2)=132 | | 5x/3−x=x/15−9/5 | | 3.5x0.2=7.0 | | 2m+11+3m=-31 | | -5x+32=-23 | | -109-5x=-12x+87 | | l(37-l)=322 | | x^2+x–90=0 | | -5x+32=-32 | | (X+1)(x+2)=132 | | 6m+4=-32 |